QUOTIENT BIORESEARCH

Challenges of validating small molecule LC-MS/MS biomarker methods

Answers Through Innovation

Introduction

- Bioanalytical classification
- White paper guidance
- Risk based approach to qualification/validation
- Setting acceptance criteria
- Endogenous assay validation specific issues
- Surrogate matrix calibration
- Case study

Illustrated with answers from recent GCC questionnaire

GCC Questionnaire - Classification

Does your organisation apply different classification to biomarkers based on study endpoint and what are they?

 Primary Differentiation for Bioanalysis:- Exploratory versus Study-endpoint

Validation vs Qualification – Risk Approach

FDA U.S. Fo Protection	od and Drug Admin og and Promoting Publ	istration Ic Health			www.fda.gov
В	iomark	er As Purp	says—F ose	it for	
Pre-clinical Target Identification	Phase 0	Phase 1	Phase 2	Phase 3	Approval?
Are we hitting the desired target in vitro?	Any hope of hitting the target in vive	52	Any indication Of activity?	Surrogate For clinical Outcome?	-
		Regul	atory Risk (…your	s too)	
		Your	isk (not so much r	regulatory)	21

Brian Booth - Reid Bioanalytical Forum July 2009

GCC Questionnaire – Method Qualification

When would your organization apply a "fit-for-purpose" qualification to a biomarker method?

Everything

At Sponsor's request

Exploratory Biomarkers

GCC Questionnaire – Method Qualification

What parameters would you include in a "fit-for-purpose" qualification of a biomarker

- Small molecule (/10 replies)
 - Calibration (10)
 - P&A (10)
 - Selectivity (9)
 - Matrix Effects (7), Parallelism (3)
 - Storage stability (7)
 - ____Sensitivity (6)_____
 - Linearity of dilution (4)
 - Recovery (4)
 - Others (reference ranges, carry-over)

Minimum?

GCC Questionnaire – White Paper Guidance

What industry reference documents do you refer to for biomarker "qualification/validation"?

- FDA/EMA guidance
- Lee et al. (2006) & (2009)
- Chau et al. (2008)
- Cummings *et al.* (2010)
- Valentin *et al.* (2011)
- CLSI guidelines (formerly NCCLS)

Fit-for-Purpose Validation – Flow Chart

- Establish expectations of sponsor or scientific goal
- Define the purpose of the assay in terms of target values and acceptance limits
- Characterise performance of method by experimentation

Cummings et al. Drug Discovery Today (2010)

GCC Questionnaire – Acceptance Criteria

Do you set acceptance criteria before or after the method "qualification/validation" for biomarker methods?

 ICON – Acceptance criteria for QCs during sample analysis is statistically linked to the performance of the method at validation using a confidence limit approach

Endogenous Assay Validation – Specific Issues

- The issue of endogenous assay validation is not well described in the regulations for small molecules
- Different approaches include:-
 - surrogate analyte
 - standard addition and extrapolation
 - surrogate matrix
- Choice of surrogate matrix
 - analyte free (hooray!)
 - stripped
 - synthetic

Beware matrix effects!

GCC Questionnaire – Method Calibration

For small molecule biomarker methods, do you use a surrogate matrix (SM), standard addition (SA) or some other approach (other)?

Standard Addition Calibration

Standard Addition Calibration

- Advantages
 - Matrix match calibration stds and samples
- Disdvantages
 - Difficult to estimate the LLOQ
 - Quantification software not always designed to handle standard addition calibration
 - Difficult to construct standard addition calibration where endogenous concentrations are high
 - bioanalytical regulations discourage extrapolation of calibration

Surrogate Matrix Calibration

- Advantages
 - Conventional quantitative processing of calibration
 - LLOQ instrument response can be measured directly (albeit in surrogate matrix)
 - No extrapolation of calibration
- Disadvantages
 - High probability of matrix effects

Quotient approach is surrogate matrix calibration for small molecule LC-MS/MS applications

Method Development – Batch Design

- Calibrate in surrogate matrix
- Use mix of matrix, diluted matrix and surrogate matrix QCs
 - Medium QC (undiluted pooled control matrix)
 - High QC (spiked control matrix)
 - Low QC (diluted control matrix ~x3 LLOQ)
 - LLOQ QC (spiked surrogate matrix)
- Minimise any potential matrix effects during method development
- With LC-MS/MS, SIL IS greatly increases the chances of success
- Check %RE of diluted matrix during method development

Androstendione in human urine

Measured endogenous concentration in control urine

QC ID	LLOQ	QC LOW	QC MED	QC HIGH
Concentration	0.200 ng/mL	0.496 ng/mL	12.4 ng/mL	132 ng/mL
	Surrogate Matrix	Diluted Matrix	Matrix	Spiked Matrix
Replicate 1	0.218	0.516	12.6	128
2	*0.282	0.518	12.5	128
3	0.212	0.524	11.9	128
4	0.16	~0.604	12.1	130
5	0.173	0.558	12.3	129
6	0.187	~0.620	12.1	134
7			12.5	
8			12.4	
9			13	
10			12.3	
Intrarun Mean	0.19	0.557	12.4	130
Intrarun SD	0.0248	0.0458	0.309	2.35
Intrarun %CV	13.1	8.2	2.5	1.8
Intrarun %RE	-5	12.3		-1.5
n	5	6	10	6

bias would probably indicate

EBF Open Meeting neor feetend matrix effects or differential recovery

Method Validation - Parallelism

•Fit--for-purpose method development and validation for successful biomarker measurement. J. W. Lee *et al.*, *Pharm. Res.* 23(2):312-328 (2006).

Method Validation – Matrix Effects

Etiocholanolone in urine

	Undiluted Ma	ıtrix		Diluted Matrix (1:5)					
Matrix	Mean n=6 (ng/mL)	SD	CV	Mean n=6 (ng/mL)	SD	CV	Theoretical	%RE	
Control 1	841.7	14.9	1.8	160.3	4.2	2.6	168.3	-4.8	
Control 2	610.0	45.5	7.5	120.2	3.0	2.5	122.0	-1.5	
Control 3	4993.3	202.5	4.1	954.8	30.7	3.2	998.7	-4.4	
Control 4	282.5	17.6	6.2	53.2	1.7	3.2	56.5	-5.9	
Control 5	534.5	36.6	6.8	99.9	4.5	4.5	106.9	-6.6	
Control 6	2493.3	96.1	3.9	448.5	12.5	2.8	498.7	-10.1	

Method Validation – Matrix Effects

Androsterone in urine

	Undiluted Ma	ıtrix		Diluted Matrix (1:5)				
Matrix	Mean n=6 (ng/mL)	SD	CV	Mean n=6 (ng/mL)	SD	CV	Theoretical (ng/mL)	%RE
Control 1	3481.7	107.0	3.1	1160.0	42.0	3.6	696.3	66.6
Control 2	5435.0	196.0	3.6	1338.3	30.6	2.3	1087.0	23.1
Control 3	544.3	28.2	5.2	117.0	3.2	2.7	108.9	7.5
Control 4	591.7	19.1	3.2	146.0	7.1	4.8	118.3	23.4
Control 5	1153.3	41.8	3.6	249.7	7.7	3.1	230.7	8.2
Control 6	892.7	21.6	2.4	242.3	9.6	4.0	178.5	35.7

Application of Surrogate Matrix Approach -Cortisol Metabolism

Tetrahydrocortisol

Allo-Tetrahydrocortisol

Tetrahydrocortisone

Steroid Ratio 1

QC Data from Sample Analysis

QC High	5a-THF	a-cortol	a-cortolone	b-cortol	b-cortolone	THE	THF	Ratio 1	Ratio 2
ng/mL	4540	1150	5210	1250	4890	15800	4070	0.43	0.54
Mean	4558	1215	5273	1320	5005	16831	4055	0.41	0.50
SD	368	81	476	102	441	1309	316	0.02	0.02
%CV	8.1	6.7	9.0	7.7	8.8	7.8	7.8	3.7	4.5
%RE	0.4	5.6	1.2	5.6	2.3	6.5	-0.4	-4.0	-7.4

QC Medium	5a-THF	a-cortol	a-cortolone	b-cortol	b-cortolone	THE	THF	Ratio 1	Ratio 2
ng/mL	1620	160	1270	265	938	6140	2180	0.51	0.62
Mean	1530	155	1206	254	913	6072	2131	0.49	0.60
SD	149	13	109	25	87	498	196	0.02	0.03
%CV	9.7	8.4	9.0	10.0	9.6	8.2	9.2	5.0	5.7
%RE	-5.5	-2.9	-5.1	-4.0	-2.7	-1.1	-2.3	-2.5	-3.6

QC Low	5a-THF	a-cortol	a-cortolone	b-cortol	b-cortolone	THE	THF	Ratio 1	Ratio 2
ng/mL	324	32	254	53	188	1230	436	0.505	0.618
Mean	317	31	245	45	188	1141	424	0.51	0.64
SD	41	4	29	7	22	134	54	0.02	0.03
%CV	13.0	12.6	11.8	14.4	11.8	11.7	12.7	3.4	3.9
%RE	-2.2	-3.6	-3.5	-14.6	-0.2	-7.2	-2.8	1.5	4.0

>23% QC failure at +/-15%

<12% QC failure at +/-20%

<0.5% QC failure @ +/-15%

SAD Data with Confidence Limits

Generic Approach

- Surrogate matrix calibration
- Generic Approach
- Use of SIL IS
- Applied to both up/down regulation
- Track record of use
- Fit-for-purpose validation
- Applied to wide range of small molecule endogenous analytes

- Bioanalytical classification of biomarkers; exploratory versus study endpoint
- Use risk based approach to determine extent of qualification/validation
- Opportunity to introduce biomarkers earlier (preclinical) at less cost
- Minimum for a qualification should probably include -Calibration, P&A, Selectivity, Matrix effect, Stability (limited) and Sensitivity
- Consider setting acceptance criteria based on performance of the assay during validation
- Use of surrogate matrix offers a relatively simple generic approach

QUOTIENT BIORESEARCH

Answers Through Innovation