New EMA guideline on method validation and how it translates into best practice for Ligand Binding Assays

Daniela Stoellner

Biologics Safety & Disposition, PK-PD Bioanalytics

EBF 4th Open Symposium, Barcelona, 16-18 Nov 2011

General comments on new EMA guideline

- EMA acknowledged that LBA differ significantly from chromatographic methods, therefore separate recommendations are provided → separate chapter 7
 - Reference standard
 - Specificity
 - Selectivity
 - Calibration curve
 - Precision and accuracy
 - Dilution linearity and parallelism

Reference standard

- 1. Well-characterized and documented, e.g. CoA and origin
- Strongly recommends to use same batch for C/QC prep as used for non-clinical and clinical studies
- Change of batch: analytical characterisation and bioanalytical evaluation required to ensure performance characteristics of method not altered
- Ad 2) in general, yes we do, at least for non-clinical studies, but often difficult for long clinical studies
- Change of batch (including critical reagents):

 Comparison of new reagent versus old: precision and accuracy run with 2 calibration curves and 2 full sets of 5 QCs on the same plate

Specificity

related to concept of cross-reactivity with structurally "related compounds"

"Endogenous compounds" → endogenous counterparts??

- Timing: Evaluation may be conducted once "related molecules" are available (can be after original validation)
- 2. Add increasing conc of the structurally related molecule or the drugs expected to be concomitantly administered at LLOQ and ULOQ
- Bias ± 25% from nominal value
- In general, cross-reactivity / interference is tested during assay development to
 - → Select right tools and assay format
- Different molar ratios of interfering protein to analyte must be tested Bias ± 20% from nominal value

Selectivity

ability to measure the analyte in presence of unrelated compounds in matrix

EMA

- 1. ≥ spiking at least 10 sources of sample matrix at or near LLOQ
- 2. Should include lipemic and haemolysed samples
- Strongly recommends to include sources from disease population
- 4. It may be prudent to evaluate selectivity at higher analyte conc
- 5. If interference is conc dependent → determine the minimum concentration where interference occurs. It may be necessary to adjust the lower level of quantification accordingly, before assay validation
- 6. Bias ± 20% (25% at the LLOQ) for at least 80% of the matrices

Ongoing discussion: to include also lipemic and haemolysed samples

Business Use Only many 2. Degree of beams lysic? Flore complex.

^{5||Business}How many? Degree of haemolysis? Flag sample

Calibration curve

Response function generally non linear and often sigmoidal

- 1. A minimum of 6 CS, at least in duplicate
- 2. Spaced evenly on a logarithmic scale within anticipated range
- 3. Anchor points allowed to facilitate curve fitting
- 4. Minimum of six runs during validation → results to be reported in a table to establish overall robustness of the regression model
- 5. Bias ± 20% (± 25% at LLOQ and ULOQ) for at least 75 % of the CS. No acceptance criteria on anchor points
- 6. CS may be prepared in surrogate matrix
- CS at LLOQ and ULOQ included → have to pass during precisionaccuracy runs

Accuracy & precision

EMA

- QC samples should be frozen
- 2. 5 QC samples at LLOQ, < 3 times LLOQ, mid, high, ULOQ
- 3. Assess accuracy, precision and total error
- 4. At least six independent runs over several days
- 5. Bias ± 20% (± 25% at LLOQ/ULOQ); Precision: < 20% (< 25% at LLOQ/ULOQ; Total error: 30% (40% at LLOQ/ULOQ)</p>

Frozen QC:

- •Which storage temperature?
- •Prepared in bulk for all 6 runs? OR prepared for each run?
- •Systematic error?

Total error: what is the added value?

Dilution linearity & parallelism

to check if conc of analyte > ULOQ can be accurately measured and to detect hook effect

- 1. QC samples > ULOQ to be diluted in blank matrix
- 2. Back-calc conc: ± 20% of nominal conc Precision across all dilutions < 20%
- Parallelism between standard curve and serially diluted samples to be assessed to detect matrix effect and differing affinities for metabolites
- 4. Timing: as soon as study samples become available
- Study sample (close to Cmax) to be diluted to at least three conc with blank matrix
- We allow also dilution in buffer if acceptance criteria are met.

Acknowledgements

All colleagues in BxSD

